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Fugitive Emissions: Motivation

A Fugitive emissions are significant sources:
A UNFCCC 2011 estimates:
A 576 Mt CO, eq.
A 3.8% of reported GHG emissions

A Fugitive emissions are often economic to mitigate based on
value of gas alone

A Advances in IR camera technology and operation protocols
have improved detection ability

A Quantification remains a challenge

A Could leaks be detected and quantified on a quasi-
continuous basis?
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Fugitive Emissions: Inverse / Sensor Oriented Analysis

Is there another approach?
A Starting from measureable sensor data, what source(s)

would reproduce observations?

A Sensor data contains
iInformation about
upwind concentrations 3001

A Similar approaches
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A Statistical (trajectory based) ximw]
A Adjoint (gradient optimization based)
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What is the concept?

A Semi-permanent concentration sensor network combined

with wind direction and speed
A Quasi-continuous operation

A Directed maintenance to
new leaks as they appear

A Reduced costs and h 5
reduced emissions

A Current research focus:

1. Novel detection system design
2. Numerical testing and development of statistical source location
algorithms

3. Simulation and development of advanced, gradient adjoint based,
guantification algorithms
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Tuneable Diode Laser Based
Detector Network Design & Testing
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Fugitive Emission Sensing System

A Sensor system required attributes:
A Fast

I Many gas measurements over an array of sensors every minute

A Selective

T Low interference from other
constituents (CO,, H,0) '

A Accurate
A Sensitive ‘-
| 4 %

I Must measure small changes
(0.25 ppm) in ambient methane
concentration (~2.0 ppm)

A Robust

I Operate in a harsh outdoor environment year-round
I Function over a wide range of temperatures
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A Novel Fibre-optic-based TDLAS System

A How does it work?
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A Novel Fibre-optic-based TDLAS System
- > M.

A How does it work?
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A Novel Fibre-optic-based TDLAS System

A How does it work?
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SOURCE LOCATION &
QUANTIFICATION ALGORITHMS
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Tests on a Simplified Gas Plant Geometry

A Basic gas plant

layout meshed for
numerical testing

Detailed wind
modelling and
simulated fugitive
emissions
releases

Simulation based
development
using both in-
house and
commercial codes
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AVideo shows
plume in a
realistic transient
wind flow

Alnflow velocity
profile from actual
tower data

AHighly dynamic,
complex flow
behavior and
entrapment of gas
In building wakes

CFD Simulations
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2. Statistical Source Location: Summary

A Trajectory-based algorithms show very good potential for
leak location in complex environments
A C.A. Brereton, M.R. Johnson (2012) Identifying Sources of Fugitive

Emissions in Industrial Facilities using Trajectory Statistical
Methods, Atmospheric Environment, 51-46-55

A Success in using algorithms
with pre-computed, simplified
wind profiles raises possibility
of quasi-continuous source  :mw
detection

400—

A However methods shown up
to now are only good for
source | ocatio o m w

ot
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3. Advanced Algorithms: Adjoint Methods

A Early-phase investigation of adjoint-based optimization
to locate and quantify stationary fugitive emissions

A Advanced mathematical approach to solving ill-posed
Inverse problems

A Similar techniques have been implemented in a variety
of fields

A Current research focus is on development and
practical implementation of algorithms
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How Does it Work?

A Want source(s) to reproduce observations

AAnObjective Funct_innh' me a s |
mismatch between measurements .., '
& model predlctlon
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A Find the source(s) that minimizes f X [mi
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Objective Function, f

[ Guesz(f)ource ][ Obser(\:iations J A F|nd the source parameters
‘ S(x) that minimize f

Forward Model
) 1
Objective
Function
f(c(x),c)

Gradient
df/dx(a;db/dx)

N

A Need to know the gradient of
f (how f changes with model
Inputs)
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Optimization

[ S J[ T JA Find the source parameters
S(x) that minimize f

[ Forward Model ]
- l f (how f changes with model
‘ Inputs)
[ ey ][ Funtion 1 A Find it using the adjoint
! | e sensitivity method

A Need to know the gradient of

Gradien A Standard gradient-based
[ S ] optimization algorithm
‘ A L-BFGS-B
[ Orx)?ffn(;?/gtxi;’” ] A Get a better source guess s(x)

to minimize f(x)

18 Carleton

UNIVERSITY




Sample Results: 3D T 4 Source Case
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Sample Results: Adjoint Transport
e
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Sample Results: Adjoint Transport
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Sample Results: 3D T 4 Source Case
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Sample Results: 3D T 4 Source Case
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Sample Results: 3D T 4 Source Case
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Sample Results: 3D T 4 Source Case
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Sample Results: 3D T 4 Source Case
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